살아있는 생물의 몸속 깊은 곳을 살펴볼 수 있는 ‘광학 현미경 기술’이 개발됐다. 뇌 속 깊숙이 분포돼 있는 신경세포에도 정확히 초점을 맞춰 관찰 가능하다.

UNIST(총장 정무영) 생명과학부의 박정훈 교수는 미국 퍼듀대(Purdue University) 멩 쿠이(Meng Cui) 교수팀과 공동으로 ‘다개구 보정광학 현미경(Multi-Pupil Adaptive Optics, MPAO)’을 개발했다.

이 현미경은 살아있는 쥐의 뇌 속 신경세포와 혈관 등 생체 내부 깊숙한 곳을 고해상도로 보여준다. 이 기술을 이용하면 넓은 영역(450㎛×450㎛)의 생체조직 내부를 광학 현미경으로 실시간 관찰 가능하다.

생체조직을 이루는 세포는 지질이나 단백질 등 다양한 물질로 이뤄진다. 빛의 경로는 이들 물질의 경계면마다 달라진다. 따라서 관찰 지점에 광초점을 형성하기 위해 입사된 빛은 무작위적으로 퍼져 버린다(복수산란). 결국 생체 깊숙한 부분에 초점을 못 만들어 고해상도 이미지를 얻지 못하는 한계를 극복하기 위해 박정훈 교수팀은 생체조직에서 왜곡되는 ‘빛의 파면(wavefront)’을 조절해 복수산란을 상쇄시킬 기술을 개발했다.

세계 최초로 개발한 다개구 현미경은 하나의 대물렌즈를 마치 여러 개의 독립적인 렌즈처럼 사용하는 신기술이다. 대물렌즈의 입사평면(개구)를 복사 및 분리해, 각각의 개구마다 서로 다른 파면으로 빛을 입사시킨 것이다. 연구진은 총 9개의 독립적인 개구를 구현해 서로 다른 깊이에 대한 정보를 동시에 얻었다. 살아있는 쥐의 뇌에서 고해상도 뉴런 분석과 미세아교세포의 면역 활동은 물론 뇌혈관의 깊이별 동역학까지 관찰한 것이다.

박정훈 교수는 “뇌 활동을 이해하려면 넓은 영역에 분포된 뇌세포 사이에서 역동적인 연결 관계를 직접 봐야한다”며, “이번 기술로 뇌뿐 아니라 살아있는 생체조직 깊숙이 고해상도로 실시간 관찰할 수 있는 창(window)이 생긴 셈이다”이라고 말했다.

그는 이어 “신개념 다개구 보정광학 현미경을 이용하면 생명현상을 자연 상태 그대로 관찰 가능하다”며, “현재 실험실에 국한돼 있는 광학 현미경 기술을 임상으로 확대시킬 계기가 될 것”이라고 기대했다.

이번 연구결과는 세계적인 네이처 메소드(Nature Methods, IF=25.328) 5월 9일자에 발표됐다. 네이처 메소드는 네이처(Nature) 자매지로 생화학 연구방법 분야 세계 최고 권위지다.

 

 

이 기사를 공유합니다
저작권자 © 메드월드뉴스 무단전재 및 재배포 금지